

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science honours in Applied Statistics			
QUALIFICATION CODE: 08BSSH	LEVEL: 8		
COURSE CODE: STP801S	COURSE NAME: STOCHASTIC PROCESSES		
SESSION: JUNE 2022	PAPER: THEORY		
DURATION: 3 HOURS	MARKS: 100		

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER			
EXAMINER	Prof. RAKESH KUMAR		
MODERATOR:	Prof. PETER NJUHO		

	INSTRUCTIONS
1.	Answer ALL the questions in the booklet provided.
2.	Show clearly all the steps used in the calculations.
3.	All written work must be done in blue or black ink.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1. (Total marks: 10)

(a) What is a stochastic process?

(2 marks)

(b) Classify the stochastic processes according to parameter space and state-space using suitable examples. (8 marks)

Question 2. (Total marks: 10)

(a) Define martingale.

(2 marks)

(b) Differentiate between super- and sub-martingales.

(3 marks)

(c) What is gambler's ruin problem?

(5 marks)

Question 3. (Total marks: 20)

- (a) Show that the transition probability matrix along with the initial distribution completely specifies the probability distribution of a discrete-time Markov chain. (10 marks)
- (b) Suppose that the probability of a dry day (state 0) following a rainy day (state 1) is 1/3 and that probability of a rainy day following a dry day is 1/2. Develop a two-state transition probability matrix of the Markov chain. Given that May 1, 2022 is a dry day, find the probability that May 3, 2022 is a dry day. (10 marks)

Question 4. (Total marks: 10)

(a) Differentiate between persistent and transient states.

(3 marks)

(b) Classify the states of the Markov chain whose transition probability matrix is given below:

(7 marks)

Question 5. (Total marks: 10)

(a) Find the steady-state probabilities of the Markov chain whose one-step transition probability matrix is given below: (8 marks)

1

2

$$\begin{bmatrix} 0 & 2/3 & 1/3 \\ 1/2 & 0 & 1/2 \\ 2 & 1/2 & 1/2 & 0 \end{bmatrix}$$

0

(b) What is stationary distribution of a Markov chain?	(2 marks)
Question 6. (Total marks:20)	
(a) Milantia a Daissau aura 2	/F 1 1
(a) What is a Poisson process?	(5 marks)
(b) Suppose that the customers arrive at a service facility in accordance with a Poi	isson process
with mean rate of 3 per minute. Then find the probability that during an interval	
	or 2 minutes.
(i) exactly 4 customers arrive (ii) greater than 4 customers arrive	
(iii) less than 4 customers arrive	
$(e^{-6} = 0.00248)$	(10 marks)
,	
(c) Prove that if the arrivals occur in accordance with a Poisson process then the	
times are exponentially distributed.	(5 marks)
Question 7. (Total marks: 20)	
(a) Derive the Changar Kelmogorov equations for continuous-time Markey chair	n (10 marks)
(b) Derive Kolmogorov forward differential equation.	(10 marks)
(a) Derive the Chapman-Kolmogorov equations for continuous-time Markov chai (b) Derive Kolmogorov forward differential equation.	n. (10 marks) (10 marks)

-----END OF QUESTION PAPER.....